首页 | 本学科首页   官方微博 | 高级检索  
     


Preparation and tribological performance of chemically-modified reduced graphene oxide/polyacrylonitrile composites
Affiliation:1. Materials Science and Engineering, University of Texas at Arlington, Arlington, TX, United States of America;2. Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, United States of America;3. Energy Systems, Argonne National Lab, Argonne, IL, United States of America
Abstract:Interface control and dispersion of graphene base nanomaterials in polymer matrix are challenging to develop high comprehensive nanocomposites due to their strong interlayer cohesive energy and chemical inertia. In this research, an efficient approach is presented to functionalize reduced graphene oxide nanosheets by N-[3-(trimethoxylsilyl)propyl]ethylenediamine, which is dispersed into polyacrylonitrile to prepare N-[3-(trimethoxylsilyl)propyl]ethylenediamine – reduced graphene oxide/polyacrylonitrile nanocomposites. A thermogravimetric analysis technique was employed to evaluate thermal properties of the nanocomposites. The tribological properties of the polyacrylonitrile/graphene nanocomposites were investigated. The morphologies and volume of the worn surface were examined using a 3D profilometer. The impact of loading ratio on friction coefficient, carry-bearing capacity and durability were studied. The N-[3-(trimethoxylsilyl)propyl]ethylenediamine – reduced graphene oxide/polyacrylonitrile nanocomposite with appropriate loading ratio of reduced graphene oxide exhibited a high load-bearing capacity and durability. Therefore, the polyacrylonitrile/graphene nanocomposite shows promising potential to industrial applications involving the lubrication and anti-wear.
Keywords:A. Polymer–matrix composites (PMCs)  A. Nano-structures  E. Surface treatments  Graphene
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号