首页 | 本学科首页   官方微博 | 高级检索  
     


Mitigating greenhouse gas and nitrogen loss with improved fertilizer management in rice: quantification and economic assessment
Authors:H. Pathak
Affiliation:(1) Division of Environmental Sciences, Indian Agricultural Research Institute, New Delhi, 110 012, India
Abstract:Several technologies have been developed to improve the recovery efficiency of N (REN) but their impacts on greenhouse gas (GHG) emission, N loss and economic implication are rarely analysed. A decision support system (DSS) has been developed to quantify inputs, outputs and balance of N in soil; GHG emission and REN with the prominent N management technologies in rice. This DSS, named InfoNitro (Information on Nitrogen Management Technologies in Rice), integrated analytical and expert knowledge with databases on bio-physical, agronomic and socio-economical features to establish input–output relationships related to N management in rice. Sixteen technologies, which differed in terms of water regime, method of N application, forms of N and tools of fertilizer recommendation were analysed for their REN, N losses, GHG emission and economic return in Haryana, a rice growing region in India. In the current farmers’ practice, REN was 32.7%, which increased up to 40.8% with various technologies except in mid-season drainage and alternate flooding technologies where it decreased up to 29.3%. Loss of N through leaching, volatilization and denitrification in the farmers’ practice (67.5 kg N ha−1) decreased up to 40.5 kg N ha−1 except in mid-season drainage and alternate flooding technologies where it increased. The technologies also reduced global warming potential (GWP) by 1 to 9%. However, the technologies except no tillage, mid-season drying and alternate flooding reduced the net income of the farmers. When the environmental cost (cost of N loss and GWP) was included net income with various technologies was either at par or more than the farmers’ practice. The marginal abatement cost of N loss was Rs. 8 to 134 kg−1 N and for GWP was Rs. 766 to 4854 Mg−1 CO2 eq. Resource conserving technology was the most cost effective strategy to reduce N loss and GHG emission whereas integrated N management cost high for mitigating GHG emission.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号