首页 | 本学科首页   官方微博 | 高级检索  
     

基于多视InSAR相干性估计误差模型的相干性迭代估计
引用本文:李廷伟,梁甸农,朱炬波. 基于多视InSAR相干性估计误差模型的相干性迭代估计[J]. 信号处理, 2010, 26(4)
作者姓名:李廷伟  梁甸农  朱炬波
作者单位:国防科技大学电子科学与工程学院,长沙,410073
摘    要:文章全面分析了引起InSAR多视相干性估计误差的因素,建立了与区域增长相干性估计方法对应的多视InSAR相干性估计误差模型,提出了一种新的基于该误差模型的相干性迭代估计方法.该方法首先利用基于强度图像的区域长原理计算相干性,区域增长保证窗里的所有像素属于同一分布,从而能够消除不同分布样本导致的相干性估计误差;后利用所建立的多视相干性与真实相干性的非线性模型对所得的相干性估计值进行高斯牛顿迭代,迭代可以减少由于相性太低和估计样本太少导致的相干性估计误差,得到更加准确的相干性估计.

关 键 词:相干性  区域增长原理  高斯牛顿迭代

The Iterative Estimation of the Coherence Based on the Multi-Look InSAR Coherence Estimation Error Modeling
LI Ting-wei,LIANG Dian-nong,ZHU Ju-bo. The Iterative Estimation of the Coherence Based on the Multi-Look InSAR Coherence Estimation Error Modeling[J]. Signal Processing(China), 2010, 26(4)
Authors:LI Ting-wei  LIANG Dian-nong  ZHU Ju-bo
Abstract:The paper roundly analyzes the biases of space multi-look InSAR coherence estimation and constitutes the Multi-Look InSAR Error model of the Coherence estimation estimated by Region Growing Theory. Based on this InSAR Error model, the paper proposes a highly accurate iterative estimating method. Firstly, it chooses the moving window by region growing theory which ensures pixels in the window belong to the same distribution, then the bias resulting from the pixels belonging to different distributions is decreased. Secondly the bias resulting from too low coherence and too small number of pixels is decreased by using Gauss-Newton Iteration algorithm. The Iteration algorithm bases on the equation between the. multi-look coherence and the real coherence and the equation is educed from the complex Hermit product Speckle Noise Modeling. Experiment results validate the validity of this algorithm.
Keywords:Coherence  Region Growing Theory  Gauss-Newton Iterations
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号