首页 | 本学科首页   官方微博 | 高级检索  
     

风电功率短时骤降的极值统计分析
引用本文:夏添,查晓明,秦亮,欧阳庭辉. 风电功率短时骤降的极值统计分析[J]. 电力系统保护与控制, 2015, 43(7): 8-15
作者姓名:夏添  查晓明  秦亮  欧阳庭辉
作者单位:武汉大学电气工程学院,湖北 武汉 430072;武汉大学电气工程学院,湖北 武汉 430072;武汉大学电气工程学院,湖北 武汉 430072;武汉大学电气工程学院,湖北 武汉 430072
基金项目:国家重点基础研究发展计划(973计划)项目(2012CB215101)
摘    要:风电功率短时骤降是大规模风电发电中需要有效处理的问题之一,如何描述风电功率短时骤降的极值分布尚缺乏有效方法。基于大量实测数据的分析,研究了不同时间尺度的风电功率下降幅值的高分位数变化的规律,发现在较短时间尺度下风电功率骤降极值与风电功率下降幅值的总体分布的标准差的比值较大。采用广义Pareto分布描述风电功率短时骤降的概率分布的尾部,广义Pareto分布的T年重现水平适合作为风电功率骤降极值的指标。在不同并网容量和时间尺度利用广义Pareto分布对风电功率骤降极值进行建模,分析表明:并网容量的增加可以降低风电功率骤降极值与并网容量的比值,但在超过一定容量后有饱和效应,风电功率骤降极值随时间尺度的增加呈非线性缓慢增长。

关 键 词:风电功率短时骤降;极值;分位数;广义Pareto分布;时间尺度
收稿时间:2014-06-11
修稿时间:2014-07-05

Statistical analysis of extreme wind power ramp-down events
XIA Tian,ZHA Xiaoming,QIN Liang and OUYANG Tinghui. Statistical analysis of extreme wind power ramp-down events[J]. Power System Protection and Control, 2015, 43(7): 8-15
Authors:XIA Tian  ZHA Xiaoming  QIN Liang  OUYANG Tinghui
Affiliation:School of Electrical Engineering, Wuhan University, Wuhan 430072, China;School of Electrical Engineering, Wuhan University, Wuhan 430072, China;School of Electrical Engineering, Wuhan University, Wuhan 430072, China;School of Electrical Engineering, Wuhan University, Wuhan 430072, China
Abstract:One of the major issues in large-scale wind power generation is dealing with wind power ramp-down events, but few common methods that properly describe the extreme value distribution are reported. Based on the field measurement, this paper studies statistical models of empirical quantile of wind power ramp-down magnitudes in different temporal scales. The ratio of the extreme ramp-down value to the standard deviation of wind power fluctuations is relatively large in shorter temporal scales. It's found that generalized Pareto distribution is suitable to identify the upper-tail probability of wind power ramp-down. The T year return level of wind power ramp-down magnitudes can be used as index of extreme ramp-down. The paper then establishes the generalized Pareto distribution model under different installed capacity and temporal scales. Analysis shows that the ratio of extreme wind power ramp-down magnitude to installed capacity gets smaller with a trend of saturation when the installed capacity increases and there is a non-linear slow growth in extreme wind power ramp-down magnitude when temporal scale increases.
Keywords:wind power ramp-down   extreme value   quantile   generalized Pareto distribution   temporal scale
本文献已被 CNKI 等数据库收录!
点击此处可从《电力系统保护与控制》浏览原始摘要信息
点击此处可从《电力系统保护与控制》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号