摘 要: | 针对焊接过程的高度非线性,多种因素的复杂交互作用,难以预测焊接接头力学性能的问题和常用反馈(Back propagation,BP)神经网络的不足,利用模糊C均值(Fuzzy C-means,FCM)聚类算法和伪逆法相结合,建立焊接接头力学性能模糊径向基(Radial basis function,RBF)神经网络预测模型。以TC4钛合金惰性气体钨极保护焊(Tungsten inert gas arc welding,TIG焊)焊接工艺参数(焊接电流、焊接速度和氩气流量)作为模型的输入参数,以焊后力学性能(抗拉强度、抗弯强度、伸长率、焊缝硬度和热影响区硬度)作为模型的输出参数。利用27组试验数据对所建模型进行学习训练,用另外9组试验数据进行仿真。结果表明,利用该方法所建模型具有结构稳定、训练速度快、适应性强、鲁棒性好、预测精度高的特点,能够预测焊接接头力学性能。通过数学解析,用函数形式表达焊接工艺参数与接头力学性能之间的规律,可以优化焊接工艺参数,为调控焊接接头的质量提供依据。
|