首页 | 本学科首页   官方微博 | 高级检索  
     

一种鲁棒的人脸特征定位方法
引用本文:吴暾华,周昌乐. 一种鲁棒的人脸特征定位方法[J]. 计算机应用, 2007, 27(2): 327-329
作者姓名:吴暾华  周昌乐
作者单位:厦门大学,信息科学与技术学院,福建,厦门,361005;厦门大学,信息科学与技术学院,福建,厦门,361005
基金项目:国家自然科学基金 , 面向21世纪教育振兴行动计划(985计划)
摘    要:提出了一种基于AdaBoost算法和C-V方法的人脸特征定位方法。首先根据AdaBoost算法训练样本得到脸、眼、鼻、嘴4个检测器;然后结合人脸边缘图像的先验规则,使用人脸检测器提取人脸区域;接着利用眼、鼻、嘴检测器从人脸区域中检测出人脸特征所在的矩形区域;最后利用C-V方法从各个特征区域中分割出人脸特征的轮廓,进而得到人脸关键特征点的位置。在DTU IMM人脸测试集上,眼睛的检测率为100%,鼻子的检测率为95.3%,嘴巴的检测率为98.4%,提取出的特征点位置准确。实验结果表明方法是有效和鲁棒的。

关 键 词:AdaBoost算法  人脸特征定位  角点检测  水平集方法  C-V方法
文章编号:1001-9081(2007)02-0327-03
收稿时间:2006-08-08
修稿时间:2006-08-112006-10-12

Robust method for facial features localization
WU Tun-hua,ZHOU Chang-le. Robust method for facial features localization[J]. Journal of Computer Applications, 2007, 27(2): 327-329
Authors:WU Tun-hua  ZHOU Chang-le
Abstract:In this paper, a robust hierarchical approach based on AdaBoost algorithm and C-V method was presented for facial features localization. First, four kinds of detectors were trained by AdaBoost algorithm for detecting faces, eyes, noses and mouths. Second, face regions were detected using the face detector combined with a rule of face edge. Third, the eye regions, nose regions and mouth regions were detected using the facial feature detectors, and the feature contours and feature points were extracted from the feature regions by C-V method. The experiments on DTU_IMM face test set resulted in 94.6% accuracy rate on eyes, 95.3% on noses and 98.4% on mouths, and the positions of the extracted feature points were accurate. Results show that the proposed approach is efficient and robust.
Keywords:AdaBoost  facial feature localization  corner detection  level set method  C-V method
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号