首页 | 本学科首页   官方微博 | 高级检索  
     

有效提高SVM参数搜索效率的样本集缩减策略
引用本文:段崇雯成礼智. 有效提高SVM参数搜索效率的样本集缩减策略[J]. 计算机应用, 2007, 27(2): 363-365
作者姓名:段崇雯成礼智
作者单位:国防科技大学,理学院,湖南,长沙,410073;国防科技大学,理学院,湖南,长沙,410073
摘    要:核函数及相关参数的选择是支持向量机中的一个重要问题, 它对模型的推广能力有很大的影响。当有大量样本参与训练的时候,寻找最优参数的网格搜索算法将消耗过长的时间。针对这一问题,提出一种舍弃非支持向量的样本点的策略,从而缩减了训练样本集。能够在基本保持原有测试准确度的前提下,将搜索时间减少一半。

关 键 词:支持向量  样本集缩减  网格搜索  最优参数选取
文章编号:1001-9081(2007)02-0363-03
收稿时间:2006-08-30
修稿时间:2006-09-01

Sample set shrinking strategy efficiently improving parameters seeking of support vector machines
DUAN Chong-wen,CHENG Li-zhi. Sample set shrinking strategy efficiently improving parameters seeking of support vector machines[J]. Journal of Computer Applications, 2007, 27(2): 363-365
Authors:DUAN Chong-wen  CHENG Li-zhi
Affiliation:Department of Science, National University of Defense Technology, Changsha Hunan 410073, China
Abstract:The choice of kernel function and relative parameters plays an important role in Support Vector Machines (SVMs). It greatly influences the generalization performance of SVMs. It is time consuming to seek for optimal parameters when the training sample set is large. Concerning this problem, a sample set shrinking strategy was proposed. This method took some of the non-support-vector samples out of the training set; therefore efficiently reduced the set size. That is to say, with half the time consumed, a model can be constructed with testing accuracy just slightly changed.
Keywords:support vector  sample set shrinking  grid searching  optimal parameters selection
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号