Abstract: | In this study, a change detection model, constructed using the Sentinel-1 Synthetic Aperture Radar (SAR) data and the simultaneous Normalized Difference Vegetation Index (NDVI) products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat 8 sensors, is applied to estimate soil moisture in middle reaches of the Heihe River Basin, and the effects of two key parameters on retrieval accuracy are comprehensively investigated. The results show that: (1) when constructing the empirical relationship between backscattering coefficient difference ( ) and Vegetation Index (VI) required by change detection model, the optimal sampling ratios in the space are approximately 2% and 4% for MODIS NDVI and Landsat 8 NDVI, respectively; (2) the Landsat 8 NDVI-based change detection model slightly outperforms the MODIS NDVI-based model in soil moisture retrieval accuracy, with Root Mean Square Error(RMSE) of 0.040 m3/m3 and 0.044 m3/m3respectively; (3) for the key parameters of the change detection method, replacing the ground-based initial soil moisture and scaling factor (maximum soil moisture difference between two adjacent dates ) by the low-resolution SMAP/Sentinel-1 L2_SM_SP data will increase the RMSE by 0.01 m3/m3 and 0.04 m3/m3 respectively. Comparing to the parameter of initial soil moisture, the error in soil moisture scaling factor will lead to more significant degradation in the performance of the change detection method, thus it is recommended to use the high precision scaling factor for soil moisture estimation. This study confirms the promising potential of Sentinel-1 data for retrieving high-resolution soil moisture via change detection method and provides practical insight into its application. |