首页 | 本学科首页   官方微博 | 高级检索  
     

基于偏最小二乘的土壤重金属铜含量高光谱估算
引用本文:贺军亮,崔军丽,张淑媛,李仁杰,查勇. 基于偏最小二乘的土壤重金属铜含量高光谱估算[J]. 遥感技术与应用, 1986, 34(5): 998-1004. DOI: 10.11873/j.issn.1004-0323.2019.5.0998
作者姓名:贺军亮  崔军丽  张淑媛  李仁杰  查勇
作者单位:1. 石家庄学院资源与环境科学学院, 河北 石家庄 050035;2. 河北师范大学 资源与环境科学学院/河北省环境演变与生态建设实验室, 河北 石家庄 050024;3. 河南大学 黄河文明与可持续发展研究中心, 河南 开封 475001;4. 南京师范大学 虚拟地理环境教育部重点实验室, 江苏 南京 210046
基金项目:国家自然科学基金青年科学基金项目(41201215);河北省自然科学基金项目(D2016106013)
摘    要:为探究高光谱数据估算土壤重金属铜含量的可行性,以石家庄市水源保护区褐土为研究对象,对不同光谱变换数据与重金属铜含量做了相关分析,建立了土壤重金属铜的单光谱变换指标偏最小二乘模型和多光谱变换指标偏最小二乘模型。结果表明:光谱反射率(R)经倒数一阶微分(RTFD)变换后与铜含量的相关性有所提高;光谱敏感波段为418、427、435、446、490、673、1 909、1 920和2 221 nm,基本位于土壤氧化铁、粘土矿物的特征吸收区域;对土壤重金属铜含量估算效果最好的单光谱变换指标偏最小二乘模型为RTFD模型,其模型决定系数(R2)为0.649,均方根误差(RMSE)为1.477;多光谱变换指标偏最小二乘模型R2和RMSE分别为0.751和1.162,建模效果优于单光谱变换指标模型。研究结果可为北方地区褐土类型土壤重金属铜的高光谱估算提供借鉴。

关 键 词:高光谱  重金属铜  倒数一阶微分  多变换偏最小二乘模型  

Hyperspectral Estimation of Heavy Metal Cu Content in Soil based on Partial Least Square Method
Junliang He,Junli Cui,Shuyuan Zhang,Renjie Li,Yong Zha. Hyperspectral Estimation of Heavy Metal Cu Content in Soil based on Partial Least Square Method[J]. Remote Sensing Technology and Application, 1986, 34(5): 998-1004. DOI: 10.11873/j.issn.1004-0323.2019.5.0998
Authors:Junliang He  Junli Cui  Shuyuan Zhang  Renjie Li  Yong Zha
Abstract:In order to explore the feasibility of estimating the heavy metal Cu content in soil by hyperspectral data, based on the study of the cinnamon soil of the water source protected area in Shijiazhuang, the correlation analysis between the different spectral data and the heavy metal copper content was made. The univariate partial least squares model of soil heavy metal Cu and a partial least squares model of multivariate were established. The results showed that the correlation between the spectral reflectance and the Cu content was improved by the Reciprocal Transformation First Derivative (RTFD). The spectral sensitivity bands were 418, 427, 435, 446, 490, 673, 1 909, 1 920, 2 221 nm, which was located in the characteristic absorption region of soil iron oxide and clay minerals. The univariate partial least squares model with the best estimation effect on soil heavy metal Cu content was RTFD model, and its model determination coefficient R2 was 0.649, Root Mean Square Error (RMSE) was 1.477. The multivariate partial least squares model R2 and RMSE were 0.751 and 1.162, and the modeling effect was better than the univariate model. The research results can provide a reference for the hyperspectral estimation of heavy metal Cu in cinnamon soil in northern China.
Keywords:Hyperspectral  Heavy metal copper  Reciprocal Transformation First Derivative (RTFD)  Multivariate Partial Least Squares model  
点击此处可从《遥感技术与应用》浏览原始摘要信息
点击此处可从《遥感技术与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号