首页 | 本学科首页   官方微博 | 高级检索  
     


Education-driven research in CAD
Authors:Jarek  
Affiliation:

College of Computing, IRIS Cluster, and GVU Center, Georgia Institute of Technology, 801 Atlantic Drive, NW, Atlanta, GA 30332-0280, USA

Abstract:We argue for a new research category, named education-driven research (EDR), which fills the gap between traditional field-specific research that is not concerned with educational objectives and research in education that focuses on fundamental teaching and learning principles and possibly on their customization to broad areas (such as mathematics or physics), but not to specific disciplines (such as CAD). The objective of EDR is to simplify the formulation of the underlying theoretical foundations and of specific tools and solutions in a specialized domain, so as to make them easy to understand and internalize. As such, EDR is a difficult and genuine research activity, which requires a deep understanding of the specific field and can rarely be carried out by generalists with primary expertise in broad education principles. We illustrate the concept of EDR with three examples in CAD: (1) the Split and Tweak subdivisions of a polygon and its use for generating curves, surfaces, and animations; (2) the construction of a topological partition of a plane induced by an arbitrary arrangement of edges; and (3) a romantic definition of the minimal and Hausdorff distances. These examples demonstrate the value of using analogies, of introducing evocative terminology, and of synthesizing the simplest fundamental building blocks. The intuitive understanding provided by EDR enables the students (and even the instructor) to better appreciate the limitations of a particular solution and to explore alternatives. In particular, in these examples, EDR has allowed the author to: (1) reduce the cost of evaluating a cubic B-spline curve; (2) develop a new subdivision curve that is better approximated by its control polygon than either a cubic B-spline or an interpolating 4-point subdivision curve; (3) discover how a circuit inclusion tree may be used for identifying the faces in an arrangement; and (4) rectify a common misconception about the computation of the Hausdorff error between triangle meshes. We invite the scientific community to encourage the development of EDR by publishing its results as genuine research contributions in peer-reviewed professional journals.
Keywords:Education-driven research  B-spline curves  Polygon subdivision  Four-point subdivision  Parametric surfaces  Evaluation of curves and surfaces  Plane arrangements  Point-set topology  Polygons  Faces  Circuit inclusion tree  Non-manifold modeling  Minimum distance  Hausdorff distance
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号