首页 | 本学科首页   官方微博 | 高级检索  
     


Molten fuel-coolant interaction during a reactivity initiated accident experiment
Authors:MS El-Genk  RR Hobbins  PE MacDonald
Affiliation:EG & G Idaho, Inc., P.O. Box 1625, Idaho Falls, ID 83415, USA
Abstract:The results of a reactivity-initiated accident experiment, designated RIA-ST-4, are discussed and analyzed with regard to molten fuel-coolant interaction (MFCI). In this experiment, extensive amounts of molten UO2 fuel and zircaloy cladding were produced and fragmented upon mixing with the coolant. Coolant pressurization up to 35 MPa and coolant overheating in excess of 940 K occurred after fuel rod failure. The initial coolant conditions were similar to those in boiling water reactors during a hot startup (that is, coolant pressure of 6.45 MPa, coolant temperature of 538 K, and coolant flow rate of 85 cm3/s). It is concluded that the high coolant pressure recorded in the RIA-ST-4 experiment was caused by an MFCI and was not due to gas release from the test rod at failure, Zr/water reaction, of UO2 fuel vapor pressure. The high coolant temperature indicated the presence of superheated steam, which may have formed during the expansion of the working fluid back to the initial coolant pressure; yet, the thermal-to-mechanical energy conversion ratio is estimated to be only about 0.3%.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号