首页 | 本学科首页   官方微博 | 高级检索  
     


Determination of the chemical diffusion of oxygen in liquid iron oxide at 1615 °c
Authors:Y Sayadyaghoubi  S Sun  S Jahanshahi
Affiliation:(1) BHP Research-Melbourne Laboratories, Mulgrave, Australia;(2) CSIRO Division of Minerals, G.K. Williams Cooperative Research Center for Extractive Metallurgy, Clayton, Australia
Abstract:The chemical diffusion of oxygen in liquid iron oxide has been studied by the oxidation of a melt in a long capillary at 1615 °C. When pure oxygen was used as the oxidizing agent, the surface composition of the slag was found to be in close agreement with the expected gas-slag equilibrium, suggesting that diffusion is the controlling step. This was not the case when air, 5 pct oxygen in argon or pure CO2 was used to oxidize the slag. The deviation of the surface composition from the expected equilibrium was in accordance with a mechanism of mixed control by both the gas-slag reaction and diffusion in the bulk. The average value of the chemical diffusivity of oxygen (or iron) in liquid iron oxide with Fe2+/Fe T between 0.25 and 0.77 was established to be 3(±1) × 10-7 m2/s. This value is one to two orders of magnitude higher than those from earlier studies. There seems to be a reasonable correlation between the chemical and the ionic self-diffusivities through the Darken equation. A quantitative analysis in this respect and on the role of electron hole migration depends on the availability of data on the ionic conductivity and the tracer diffusivities. Formerly Postgraduate Student
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号