摘 要: | 目的 为加强银行智能办理业务的设备性能,提高票据数字的识别效率,研究一种改进的算法来获得更高的数字识别效果。方法 根据银行票据的印刷数字特性进行字符的提取和分割,经过图像采集、降噪、二值化之后使用起点直方图法结合步长法进行字符的分割,然后使用改进的LENET卷积神经网络用于提取数字特征,进行分类。结果 通过实验,结果表明文中提出的方法进行复杂环境下的印刷数字识别,准确率达到95%以上,识别速率为1.169 s/张。结论 利用新的字符分割算法与改进的LENET神经网络相结合,可以很好地识别干扰强的印刷票据,准确率高。
|