首页 | 本学科首页   官方微博 | 高级检索  
     

机器学习安全攻击与防御机制研究进展和未来挑战
引用本文:李欣姣,吴国伟,姚琳,张伟哲,张宾. 机器学习安全攻击与防御机制研究进展和未来挑战[J]. 软件学报, 2021, 32(2): 406-423
作者姓名:李欣姣  吴国伟  姚琳  张伟哲  张宾
作者单位:大连理工大学软件学院,辽宁大连116620;辽宁省泛在网络与服务软件重点实验室(大连理工大学),辽宁大连116620;大连理工大学软件学院,辽宁大连116620;鹏城实验室网络空间安全中心,广东深圳518055;哈尔滨工业大学计算机科学与技术学院,黑龙江哈尔滨150001;鹏城实验室网络空间安全中心,广东深圳518055
基金项目:国家自然科学基金(61872053);中央高校基本科研基金(DUT19GJ204);广东省重点领域研发计划项目(2019B010136001);广东省重点科技计划项目(LZC0023)
摘    要:机器学习的应用遍及人工智能的各个领域,但因存储和传输安全问题以及机器学习算法本身的缺陷,机器学习面临多种面向安全和隐私的攻击.基于攻击发生的位置和时序对机器学习中的安全和隐私攻击进行分类,分析和总结了数据投毒攻击、对抗样本攻击、数据窃取攻击和询问攻击等产生的原因和攻击方法,并介绍和分析了现有的安全防御机制.最后,展望了...

关 键 词:机器学习  安全和隐私  攻击分类  防御机制
收稿时间:2019-08-12
修稿时间:2019-12-01

Progress and Future Challenges of Security Attacks and Defense Mechanisms in Machine Learning
LI Xin-Jiao,WU Guo-Wei,YAO Lin,ZHANG Wei-Zhe,ZHANG Bin. Progress and Future Challenges of Security Attacks and Defense Mechanisms in Machine Learning[J]. Journal of Software, 2021, 32(2): 406-423
Authors:LI Xin-Jiao  WU Guo-Wei  YAO Lin  ZHANG Wei-Zhe  ZHANG Bin
Affiliation:School of Software Engineering, Dalian University of Technology, Dalian 116620, Liaoning;State Key Laboratory for Ubiquitous Network and Service Software, Dalian 116620, Liaoning;School of Software Engineering, Dalian University of Technology, Dalian 116620, Liaoning;Cyberspace Security Research Center, Peng Cheng Laboratory, Shenzhen 51855, Guangdong;School of Computer Science and Technology, Harbin Institute of Technonogy, Harbin 150001, Heilongjiang
Abstract:Machine learning applications span all areas of artificial intelligence, but due to storage and transmission security issues and the flaws of machine learning algorithms themselves, machine learning faces a variety of security-and privacy-oriented attacks. This survey classifies the security and privacy attacks based on the location and timing of attacks in machine learning, and analyzes the causes and attack methods of data poisoning attacks, adversary attacks, data stealing attacks and quering attacks. Furthermore, the existing security defense mechanisms are summerized. Finally, a perspective of future work and challenges in this research area is discussed.
Keywords:machine learning  security and privacy  attack classification  defense mechanism
本文献已被 万方数据 等数据库收录!
点击此处可从《软件学报》浏览原始摘要信息
点击此处可从《软件学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号