首页 | 本学科首页   官方微博 | 高级检索  
     

不确定离散系统的神经网络自适应控制方法研究
引用本文:段玉波,姚进,毕二刚,徐威. 不确定离散系统的神经网络自适应控制方法研究[J]. 自动化技术与应用, 2012, 31(3): 4-8,23
作者姓名:段玉波  姚进  毕二刚  徐威
作者单位:1. 东北石油大学电气信息工程学院,黑龙江大庆,163318
2. 辽河油田勘探开发研究院,辽宁盘锦24010
3. 中国石油天然气管道局天津设计院,天津塘沽,300457
摘    要:本文研究了不确定离散系统的神经网络自适应控制器的设计。因为它不需要假设系统状态是可测的,一个观测器用来估计不可测状态。与现有离散系统的结果相比,该控制器具有较少的直接自适应参数。因此,可以很方便地实现工程算法。利用Lyapunov分析方法,所有的闭环系统的信号是保证最终有界(UUB),并且能够实现系统输出跟踪参考信号到有界紧集。一个仿真例子,验证了该方法的有效性。

关 键 词:不确定  离散系统  神经网络  自适应控制  李亚谱诺夫扩展理论

Adaptive Neural Network Control Method of Uncertain Discrete-Time Systems
DUAN Yu-bo , YAO Jin , BI Er-gang , XU Wei. Adaptive Neural Network Control Method of Uncertain Discrete-Time Systems[J]. Techniques of Automation and Applications, 2012, 31(3): 4-8,23
Authors:DUAN Yu-bo    YAO Jin    BI Er-gang    XU Wei
Affiliation:1.School of Electrical and Information Engineering,Northeast Petroleum University,Daqing 163318 China; 2.Liaohe Petroleum Exploration and Development Research Institute,Panjin 124010 China; 3.Institute of China Petroleum and natural Gas Pipeline Tianjin Design Institute,Tanggu 300457 China)
Abstract:In this paper,adaptive neural network controller of the uncertain discrete-time systems is designed.Because it does not assume that the system state is measurable,it uses an observer to estimate unmeasured states.The results compared with existing discrete systems,the controller has fewer direct adaptive parameters.Therefore it can easily achieve engineering algorithm.By using Lyapunov analysis,all of the closed-loop system signals are guaranteed to be the uniformly ultimate boundness(UUB).It can achieve the system output tracking the reference signal to bounded compact set.A simulation example is taken to verify the effectiveness of the method.
Keywords:uncertain  discrete system  neural network  adaptive control  Lyapunov’s theory of extension
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号