首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波变换和概率神经网络的励磁涌流识别
引用本文:许行,杨旭红,邢月红,卢栋青,张国铎. 基于小波变换和概率神经网络的励磁涌流识别[J]. 电力学报, 2012, 27(1): 1-4,22
作者姓名:许行  杨旭红  邢月红  卢栋青  张国铎
作者单位:上海电力学院电力与自动化工程学院,上海,200090
基金项目:国家自然科学基金资助项目,上海市教育委员会重点学科建设项目,上海市教育委员会科研创新项目
摘    要:针对变压器的励磁涌流问题,提出了一种基于小波变换和概率神经网络的新的变压器差动保护方案,用以实现励磁涌流与其它内部短路电流诸如单相短路、两相接地短路、三相接地短路、匝间短路的鉴别。利用小波变换进行信号分解,提取各尺度高频部分的能量,作为神经网络的输入特征向量,概率神经网络是为了进行模式识别。利用Matlab/Simulink平台上的仿真建模,获取励磁涌流和内部故障电流的数据。大量仿真结果显示,该方案可以有效地识别励磁涌流。

关 键 词:概率神经网络  小波变换  励磁涌流  Matlab仿真

Identifying Transformer Inrush Current Based On Wavelet Transform and PNN
XU Hang , YANG Xu-hong , XING Yue-hong , LU Dong-qing , ZHANG Guo-duo. Identifying Transformer Inrush Current Based On Wavelet Transform and PNN[J]. Journal of Electric Power, 2012, 27(1): 1-4,22
Authors:XU Hang    YANG Xu-hong    XING Yue-hong    LU Dong-qing    ZHANG Guo-duo
Affiliation:(Faculty of Electric Power& Automation Engineering,Shanghai University of Electric Power,Shanghai 200090,China)
Abstract:In this paper a new transformer differential protection scheme based on Wavelet Transform(WT) and Probabilistic Neural Network(PNN) is presented to identify inrush current from inner short-circuit current such as single-phase short-circuit current,two-phase grounding fault current,three-phase grounding fault current and turn-to-turn short circuit.WT is used for decomposition of signals,and the high frequency part energy of all scales is extracted as the neural network input feature vector.PNN for classification.Inrush current data and other transients are obtained by simulation using Matlab.Results show that the proposed procedure is efficient in identifying inrush current from other events.
Keywords:probabilistic neural network  inrush current  Matlab  wavelet transform
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号