首页 | 本学科首页   官方微博 | 高级检索  
     

核最小二乘算法检测红外点目标
引用本文:朱斌,樊祥,马东辉,程正东. 核最小二乘算法检测红外点目标[J]. 光电工程, 2009, 36(9). DOI: 10.3969/j.issn.1003-501X.2009.09.006
作者姓名:朱斌  樊祥  马东辉  程正东
作者单位:电子工程学院,脉冲功率激光技术国家重点实验室,合肥,230037;电子工程学院,光电系,合肥,230037;电子工程学院,脉冲功率激光技术国家重点实验室,合肥,230037;电子工程学院,光电系,合肥,230037;中国科学技术大学,合肥,230027
基金项目:电子工程学院博士研究生创新基金 
摘    要:对于背景呈非线性变化的复杂图像,用背景预测的方法对红外点目标进行检测时,传统的线性最小二乘法(Least Squares,LS)的效果比较差.文章使用核方法(Kernel Methods,KMs)推导了最小二乘法的非线性版本:核最小二乘算法(Kernel Least Squares,KLS);进一步推导出了更适合动态系统时序预测的指数加权形式的核最小二乘算法(Kemel Exponential wleighted Least Squares,KEWLS).提出了一种基于核方法的红外点目标检测算法,先用KEWLS非线性回归算法预测红外图像背景,再通过自适应门限检测残差图像中的目标,非线性函数回归和红外序列图像检测实验表明核方法较大地改进了算法的非线性函数估计与红外背景预测能力.

关 键 词:点目标检测  核方法  非线性回归  最小二乘法  指数加权  背景预测

Infrared Point Target Detection Based on Kernel Least Squares Algorithm
ZHU Bin,FAN Xiang,MA Dong-hui,CHENG Zheng-dong. Infrared Point Target Detection Based on Kernel Least Squares Algorithm[J]. Opto-Electronic Engineering, 2009, 36(9). DOI: 10.3969/j.issn.1003-501X.2009.09.006
Authors:ZHU Bin  FAN Xiang  MA Dong-hui  CHENG Zheng-dong
Affiliation:ZHU Bin1a,1b,FAN Xiang1a,2,MA Dong-hui1a,CHENG Zheng-dong1a,1b ( 1. a. State Key Laboratory of Pulsed Power Laser Technology,b. Department of Opto-Electronic,Electronic Engineering Institute,Hefei 230037,China,2. University of Sciences and Technology of China,Hefei 230027,China )
Abstract:As one of the background estimation algorithms for Infrared (IR) point target detection, least squares (LS) method has a poor performance to the complex nonlinear background. A nonlinear version of the least squares algorithm, called Kernel Least Squares (KLS) is deduced by using Kernel Methods (KMs). Furthermore, the exponential weighted form of KLS, called KEWLS, is deduced. KEWLS is more adaptive to dynamic nonlinear system's time-series prediction. A kernel-based IR target detection algorithm is proposed, image background is estimated by KEWLS nonlinear regression, and then target is detected by self-adaptive threshold detection in the difference image. It is shown by nonlinear function regression and sequence IR images detection experiments that the kernel methods improve the performance of nonlinear function regression and IR background estimation.
Keywords:point target detection  kernel methods  nonlinear regression  least squares  exponential weighted  background estimation
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号