首页 | 本学科首页   官方微博 | 高级检索  
     


On the numerical implementation of a shear modified GTN damage model and its application to small punch test
Authors:Liang Ying  Dan-tong Wang  Wen-quan Liu  Yi Wu  Ping Hu
Affiliation:1.School of Automotive Engineering,Dalian University of Technology,Dalian,China;2.Department of Engineering Mechanics,Dalian University of Technology,Dalian,China
Abstract:Gurson-type models have been widely used to predict failure during sheet metal forming process. However, a significant limitation of the original GTN model is that it is unable to capture fracture under relatively low stress triaxiality. This paper focused on the fracture prediction under this circumstance, which means shear-dominated stress state. Recently, a phenomenological modification to the Gurson model that incorporates damage accumulation under shearing has been proposed by Nahshon and Hutchinson. We further calibrated new parameters based on this model in 22MnB5 tensile process and developed the corresponding numerical implementation method. Lower stress triaxiality were realized by new-designed specimens. Subsequently, the related shear parameters were calibrated by means of reverse finite element method and the influences of new introduced parameters were also discussed. Finally, this shear modified model was utilized to model the small punch test (SPT) on 22MnB5 high strength steel. It is shown that the shear modification of GTN model is able to predict failure of sheet metal forming under wide range of stress state.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号