首页 | 本学科首页   官方微博 | 高级检索  
     

基于混合智能技术的微电网剩余负荷超短期预测
引用本文:陈民铀,朱博,徐瑞林,徐鑫. 基于混合智能技术的微电网剩余负荷超短期预测[J]. 电力自动化设备, 2012, 32(5): 13-18. DOI: 10.3969/j.issn.1006-6047.2012.05.003
作者姓名:陈民铀  朱博  徐瑞林  徐鑫
作者单位:1.重庆大学输配电装备及系统安全与新技术国家重点实验室,重庆,400044;2.重庆市电力公司电力科学研究院,重庆,401123
基金项目:国家自然科学基金资助项目(51177177);重庆市科技攻关项目(CSTC2011AC3076)
摘    要:对微电网中分布式电源发电量和短期负荷的准确预报是微电网运行控制和能量管理的重要基础.提出了微电网剩余负荷的概念和计算方法,分析了微电网剩余负荷超短期预测的特点和影响因素.在考虑微电源历史输出功率、微电网历史负荷以及本地气象因素的同时,综合运用k均值聚类分析、遗传算法和人工神经网络建立了微电网剩余负荷超短期预测模型.搭建了一个含有风电、燃气轮机和燃料电池的微电网仿真模型,仿真结果表明,模型中分布式电源发电量和微电网负荷的预测结果与实测数据非常吻合,验证了模型的预测精度.

关 键 词:微电网  剩余负荷  超短期预测  聚类算法  遗传算法  神经网络  预测

Ultra-short-term forecasting of microgrid surplus load based on hybrid intelligence techniques
CHEN Minyou,ZHU Bo,XU Ruilin and XU Xin. Ultra-short-term forecasting of microgrid surplus load based on hybrid intelligence techniques[J]. Electric Power Automation Equipment, 2012, 32(5): 13-18. DOI: 10.3969/j.issn.1006-6047.2012.05.003
Authors:CHEN Minyou  ZHU Bo  XU Ruilin  XU Xin
Affiliation:1.State Key Laboratory of Power Transmission Equipment & System Security and New Technology,Chongqing University,Chongqing 400044,China;2.Chongqing Electric Power Research Institute,Chongqing 401123,China)
Abstract:As the accurate forecasting of distributed generation and short-term load is the basis of operational control and energy management of microgrid,the concept and calculation method of microgrid surplus load are proposed and the features and influencing factors of its ultra-short-term forecasting are discussed.With the consideration of historical power outputs,loads and weather data,an ultra-short-term forecasting model of microgrid surplus load is developed,which integrates k-means clustering analysis,genetic algorithm and artificial neural network.A simulation model of microgrid with wind farms,micro-turbines and fuel cells is established and results show that,the forecasting outputs of distributed generators and the forecasting load of microgrid are very close to the measured data,which verifies the accuracy of the proposed forecasting model.
Keywords:microgrid  surplus load  ultra-short-term forecasting  clustering algorithms  genetic algorithms  neural networks  forecasting
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《电力自动化设备》浏览原始摘要信息
点击此处可从《电力自动化设备》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号