首页 | 本学科首页   官方微博 | 高级检索  
     


EFFECTS OF TEMPERATURE-DEPENDENT PHYSICAL PROPERTIES ON THE RESPONSE OF THERMALLY POSTBUCKLED PLATES
Authors:Jon Lee
Abstract:It is known that the values of physical properties, such as the moduli of elasticity and thermal expansion coefficients, cannot be assumed constant over a wide range of high-temperature applications. We therefore examine how the linear temperature variations of physical properties would affect the static and dynamic responses of thermally postbuckled plates. It is found for a clamped aluminum plate that the postbuckled maximum displacement, static x-strain, and root-mean-squared (RMS) x-strain are increased by the same order-of-magnitude percent jump in the thermal expansion coefficient. On the other hand, the critical buckling temperature, x-stress, and RMS x-stress are all decreased by the same order-of-magnitude percent drop in Young's modulus. These observations have also been collaborated with the available composite plate computations. Therefore, this provides an overall estimate on temperature dependency based on the linear temperature variations of physical properties over the operating temperature range.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号