首页 | 本学科首页   官方微博 | 高级检索  
     


Implicit Riquier Bases for PDAE and their semi-discretizations
Authors:Wenyuan Wu  Greg Reid  Silvana Ilie
Affiliation:1. Applied Mathematics Department, University of Western Ontario, London, N6A 5B7, Canada;2. Department of Computer Science, University of Toronto, Toronto, Ontario, M5S 2E4, Canada
Abstract:Complicated nonlinear systems of pde with constraints (called pdae) arise frequently in applications. Missing constraints arising by prolongation (differentiation) of the pdae need to be determined to consistently initialize and stabilize their numerical solution. In this article we review a fast prolongation method, a development of (explicit) symbolic Riquier Bases, suitable for such numerical applications. Our symbolic-numeric method to determine Riquier Bases in implicit form, without the unstable eliminations of the exact approaches, applies to square systems which are dominated by pure derivatives in one of the independent variables.
Keywords:Partial differential algebraic equation   Riquier Bases   Linear programming   Numerical algebraic geometry   Jet spaces   Ranking   Implicit function theorem   Method of lines   Semi-discretization   Algorithms   Design
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号