首页 | 本学科首页   官方微博 | 高级检索  
     


Subdivision methods for solving polynomial equations
Authors:B Mourrain  JP Pavone
Affiliation:GALAAD, INRIA Méditerranée, BP 93, 06902 Sophia Antipolis, France
Abstract:This paper presents a new algorithm for solving a system of polynomials, in a domain of RnRn. It can be seen as an improvement of the Interval Projected Polyhedron algorithm proposed by Sherbrooke and Patrikalakis Sherbrooke, E.C., Patrikalakis, N.M., 1993. Computation of the solutions of nonlinear polynomial systems. Comput. Aided Geom. Design 10 (5), 379–405]. It uses a powerful reduction strategy based on univariate root finder using Bernstein basis representation and Descarte’s rule  . We analyse the behavior of the method, from a theoretical point of view, shows that for simple roots, it has a local quadratic convergence speed and gives new bounds for the complexity of approximating real roots in a box of RnRn. The improvement of our approach, compared with classical subdivision methods, is illustrated on geometric modeling applications such as computing intersection points of implicit curves, self-intersection points of rational curves, and on the classical parallel robot benchmark problem.
Keywords:Resolution  Real solution  Symbolic-numeric computation  Polynomial equation  Subdivision  Bernstein basis  Descartes rule  Complexity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号