摘 要: | 铝合金薄板激光焊接经常会出现咬边、凹陷等表面缺陷。这两种缺陷由于尺寸小、特征相似,难以通过传统视觉在线检测手段对其进行精确分类和测量。开发了一种基于深度学习缺陷分类-点云测量的在线监测系统,利用高密度的点云数据对缺陷进行识别、分类与测量,解决了上述检测难题。通过双目结构光传感器采集点云数据;利用基于区域推荐网络的卷积神经网络模型识别和定位缺陷;在识别和定位缺陷后,通过对局部缺陷区域的点云进行操作,快速测量缺陷尺寸。高密度点云数据训练的模型的识别准确率达到93%,高于传统二维视觉传感器图像训练的模型。该检测系统在线检测允许的最大焊接速度为316.87 mm/s,适用于大多数激光焊接。
|