首页 | 本学科首页   官方微博 | 高级检索  
     


Depositional architecture of the late Ordovician drowned carbonate platform margin and its responses to sea-level fluctuation in the northern slope of the Tazhong region, Tarim Basin
Authors:Yang Xiaof  Lin Changsong  Yang Haijun  Han Jianf  Liu Jingyan  Zhang Yanmei  Peng Li  Jing Bing  Tong Jianyu  Wang Haiping and Li Huanpu
Affiliation:1. School of Energy Resources, China University of Geosciences, Beijing 100083, China;State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
2. School of Energy Resources, China University of Geosciences, Beijing 100083, China
3. Tarim Oil & Gas Exploration and Development Research Institute, Korla, Xinjiang 841000, China
4. Department of Computer Sciences, China University of Geosciences, Beijing 100083, China
Abstract:The Tazhong Uplift of the late Ordovician is a drowned rimmed carbonate platform. The carbonate rock of the late Ordovician Lianglitage Formation in the northern slope of the Tazhong region is one of the significant petroliferous intervals. Based on petrofacies, depositional cycles, natural gammaray spectrometry and carbon/oxygen isotope data from the Lianglitage Formation, one 2nd-order, three 3rd-order and several 4th-order sequences have been recognized, and the late Ordovician relative sealevel fluctuation curve has been established. The sequences O3l-1 and O3l-2 on the platform are composed of highstand and transgressive systems tracts, but lack the lowstand systems tract. The sequence O3l-3 is a drowning sequence. The sequence O3l-1 overlapped the eroded slope and pinched out to the northwest and landward. The highstand systems tract in the sequence O3l-2 consists of low-angle sigmoid and high-angle shingled progradation configuration. Major sedimentary facies of the Lianglitage Formation include reef and shoal in the platform margin and lagoon, which can be subdivided into coral-sponge-stromatoporoid reef complex, sand shoal, lime mud mound, and intershoal sea. Reefs, sand shoals and their complex are potential reservoir facies. The reefs and sand shoals in the sequence O3l-1 developed in the upper of its highstand systems tract. In the sequence O3l-2, the highstand systems tract with an internal prograding configuration is a response to the lateral shifting of the complex of reef and sand shoal. The transgressive systems tract, in particular the sand shoals, developed widely on the slope of the platform margin and interior. The reefs in the sequence O3l-3 migrated towards high positions and formed retrograding reefs in the western platform and low relief in the platform interior. Basinward lateral migration of the reefs and pure carbonate rock both characterize highstand systems tract and show that the rise of the relative sea-level was very slow. Shingled prograding stacking pattern of the 4th-order sequences and reefs grow horizontally, which represents the late stage of highstand systems tract and implies relative sealevel stillstand. Reefs migrating towards high land and impure carbonate rock both indicate transgressive systems tract and suggest that the relative sea-level rose fast. Erosional truncation and epidiagenetic karstification represent a falling relative sea-level. The relative sea-level fluctuation and antecedent palaeotopography control the development and distribution of reef complexes and unconformity karst zones. Currently, the composite zone of epidiagenetic karstic intervals and high-energy complexes of reefs and sand shoals with prograding configuration is an important oil and gas reservoir in the northern slope of the Tazhong carbonate platform.
Keywords:Tarirn Basin  late Ordovician  carbonate platform  depositional architecture  sea-level fluctuation
本文献已被 维普 万方数据 SpringerLink 等数据库收录!
点击此处可从《石油科学(英文版)》浏览原始摘要信息
点击此处可从《石油科学(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号