首页 | 本学科首页   官方微博 | 高级检索  
     

组合核函数SVM在网络安全风险评估中的应用
引用本文:高会生,郭爱玲. 组合核函数SVM在网络安全风险评估中的应用[J]. 计算机工程与应用, 2009, 45(11): 123-125. DOI: 10.3778/j.issn.1002-8331.2009.11.038
作者姓名:高会生  郭爱玲
作者单位:华北电力大学,电子与通信工程系,河北,保定,071003;华北电力大学,电子与通信工程系,河北,保定,071003
摘    要:核函数是SVM的关键技术,核函数的选择将影响着支持向量机的学习能力和泛化能力。各个普通核函数各有利弊,在分析各个普通核函数的基础上,采用了一种新的组合核函数,它既具有很好的泛化能力,也具有很好的学习能力,并将其构造的支持向量机应用到网络安全的风险评估中,与普通核函数构造的支持向量机的评估效果进行比较。结果表明组合核函数支持向量机不仅提高了分类速度,而且具有较高的分类精度。

关 键 词:支持向量机  组合核函数  网络安全  风险评估
收稿时间:2008-02-25
修稿时间:2008-5-12 

Application of combined kernel SVM on network security risk evaluation
GAO Hui-sheng,GUO Ai-ling. Application of combined kernel SVM on network security risk evaluation[J]. Computer Engineering and Applications, 2009, 45(11): 123-125. DOI: 10.3778/j.issn.1002-8331.2009.11.038
Authors:GAO Hui-sheng  GUO Ai-ling
Affiliation:Department of Electronic and Telecommunication Engineering,North China Electric Power University,Baoding,Hebei 071003,China
Abstract:Kernel function is the key technology of SVM,the choice of kernel will affect the learning ability and generalization ability of SVM.Since every traditional kernel has its advantages and disadvantages,this paper analyzes the principle of traditional ker-nels and adopts a new kernel of combined kernel which has better generalization ability and better learning ability,and adopts the combined kernel SVM into network security risk evaluation,and then compares with the SVM using traditional kemels.The results s...
Keywords:Support Vector Machine(SVM)  combined kernel  network security  risk evaluation
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号