首页 | 本学科首页   官方微博 | 高级检索  
     

立体视觉里程计中基于微粒群优化的初始运动估计和内点检测
引用本文:许允喜,项志宇,刘济林. 立体视觉里程计中基于微粒群优化的初始运动估计和内点检测[J]. 控制理论与应用, 2015, 32(1): 93-100
作者姓名:许允喜  项志宇  刘济林
作者单位:浙江大学信息与电子工程系,浙江杭州,310027
基金项目:国家自然科学基金项目(61071219)资助.
摘    要:初始运动估计和内点检测是影响立体视觉里程计定位精度的重要因素.目前,立体视觉里程计都采用基于3点线性运动估计的随机采样一致性(random sample consensus,RANSAC)方法.本文分析了随机采样一致性方法在初始运动估计中的性能:该方法对排除误匹配点是有效的,但在一定采样次数下采样到特征点提取误差和立体匹配误差都很小的匹配点的概率是很小的,所以通过该方法得到的初始运动参数和匹配内点不够精确。本文提出了采用微粒群优化的初始运动估计和内点检测新方法,该方法收敛速度快,搜索精确解的能力强,能够获得高精度的运动参数和匹配内点.立体视觉里程计仿真实验和真实智能车实验表明:和随机采样一致性方法相比,本文方法在运行时间、定位精度方面都更优越.

关 键 词:视觉里程计  视觉导航  微粒群优化  自主机器人
收稿时间:2013-12-10
修稿时间:2014-05-09

Initial motion estimation and inliers detection based on particle swarm optimization for stereo visual odometry
XU Yun-xi,XIANG Zhi-yu and LIU Ji-lin. Initial motion estimation and inliers detection based on particle swarm optimization for stereo visual odometry[J]. Control Theory & Applications, 2015, 32(1): 93-100
Authors:XU Yun-xi  XIANG Zhi-yu  LIU Ji-lin
Affiliation:Department of Information Science & Electronic Engineering, Zhejiang University,Department of Information Science DdDd Electronic Engineering, Zhejiang University,Department of Information Science DdDd Electronic Engineering, Zhejiang University
Abstract:Initial motion estimation and inliers detection have an important impact on the accuracy of stereo visual odometry. At present, random sample consensus (RANSAC) method based on the 3-points linear motion estimation is widely used to obtain initial motion parameter and inliers in stereo visual odometry. In this paper, we analyses the performance of RANSAC. It is very effective to eliminate outliers, but the probability which RANSAC have sampled the matching points with low error of feature extraction and error of stereo matching is very low. Therefore, the initial motion parameter and matching inliers computed by RANSAC method are not precise. We propose a new initial motion estimation and inliers detection method based on particle swarm optimization in this paper. Our method has a good performance with the fast convergence and strong global searching ability. Our method can obtain accurate motion parameter and matching inliers. Stereo visual odometry experiments with simulated data and outdoor intelligent vehicle showed that our algorithm outperforms RANSAC method according to run-time, accuracy.
Keywords:visual odometry   visual navigation   particle swarm optimization   autonomous robots
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《控制理论与应用》浏览原始摘要信息
点击此处可从《控制理论与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号