首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of precursor concentration on the characteristics of nanoscale zerovalent iron and its reactivity of nitrate
Authors:Liou Ya Hsuan  Lo Shang-Lien  Kuan Wen Hui  Lin Chin-Jung  Weng Shih Chi
Affiliation:Research Center for Environmental Pollution Prevention and Control Technology, Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan.
Abstract:Differing precursor concentrations, 1.0, 0.1, and 0.01 M FeCl(3) x 6H(2)O, were performed to produce nanoscale Fe(0) and the results were discussed in terms of the specific surface area, particle size and electrochemical properties. The results indicated that the nanoscale Fe(0) prepared by 0.01 M FeCl(3) had absolutely reduced in size (9-10nm) and possessed the greatest specific surface area (56.67 m(2) g(-1)). These synthesized nanoscale Fe(0) particles were attempted to enhance the removal of 40 mg-NL(-1) unbuffered nitrate solution. The first-order degradation rate constants (k(obs)) increased significantly (5.5-8.6 times) with nanoscale Fe(0) prepared by 0.01 M precursor solution (Fe(0.01 M)(0)). When normalized to iron surface area concentration, the specific rate constant (k(SA)) was increased by a factor of approximately 1.7-2.4 using Fe(0.01 M)(0) (6.84 x 10(-4) L min(-1) m(-2) for Fe(0.01 M)(0), 4.04 x 10(-4) L min(-1) m(-2) for Fe(0.1 M)(0) and 2.80 x 10(-4) L min(-1) m(-2) for Fe(1 M)(0)). The rise of reactivity of the reactive site on the Fe(0.01 M)(0) surface was indicated by the specific rate constant (k(SA)) calculation and the i(0) value of the electrochemical test.
Keywords:Precursor concentrations  Nanoscale Fe0  Nitrate
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号