首页 | 本学科首页   官方微博 | 高级检索  
     


Screw dislocation-driven growth of two-dimensional nanoplates
Authors:Morin Stephen A  Forticaux Audrey  Bierman Matthew J  Jin Song
Affiliation:Department of Chemistry, University of Wisconsin - Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States.
Abstract:We report the dislocation-driven growth of two-dimensional (2D) nanoplates. They are another type of dislocation-driven nanostructure and could find application in energy storage, catalysis, and nanoelectronics. We first focus on nanoplates of zinc hydroxy sulfate (3Zn(OH)(2)·ZnSO(4)·0.5H(2)O) synthesized from aqueous solutions. Both powder X-ray and electron diffraction confirm the zinc hydroxy sulfate (ZHS) crystal structure as well as their conversion to zinc oxide (ZnO). Scanning electron, atomic force, and transmission electron microscopy reveal the presence of screw dislocations in the ZHS nanoplates. We further demonstrate the generality of this mechanism through the growth of 2D nanoplates of α-Co(OH)(2), Ni(OH)(2), and gold that can also follow the dislocation-driven growth mechanism. Finally, we propose a unified scheme general to any crystalline material that explains the growth of nanoplates as well as different dislocation-driven nanomaterial morphologies previously observed through consideration of the relative crystal growth step velocities at the dislocation core versus the outer edges of the growth spiral under various supersaturations.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号