首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
柯氏向后微分方程组解的适定性
作者姓名:
韩松霞 叶建军
摘 要:
用泛函分析的理论和方法研究马尔可夫过程中生灭Q-矩阵的性质,证明在一定条件下生灭Q-矩阵生成一个线性算子C0半群,即此生灭Q-矩阵是某个C0半群的无穷小生成元,从而证明了生灭过程理论中的柯氏向后微分方程组解的存在性,唯一性和稳定性。
关 键 词:
柯氏向后微分方程组 解 C0半群 线性算子 生灭Q-矩阵 生灭过程 泛函分析 马尔可夫过程 存在性 唯一性 稳定性
本文献已被
维普
等数据库收录!
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号