首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of extrusion of grain and feeding frequency on rumen fermentation, nutrient digestibility, and milk yield and composition in dairy cows.
Authors:Z Shabi  I Bruckental  S Zamwell  H Tagari  A Arieli
Affiliation:Hebrew University, Faculty of Agriculture, Rehovot, Israel.
Abstract:The effect of corn extrusion and feeding frequency on ruminal and postruminal digestibility and milk yield was studied in cows fed a high concentrate diet. Four Israeli Holstein cows fitted with rumen and abomasal cannulas were used. The experiment was arranged as a 2 x 2 factorial design, with two diets and two feeding frequencies (two or four meals per day). One diet contained 40% ground corn. In the second diet, half of the ground corn was replaced with extruded corn. Feeding cows the extruded versus ground corn diet decreased ruminal ammonia N and plasma urea N concentrations, increased postruminal digestibility of nonstructural carbohydrates, reduced dry matter intake, decreased yield of milk and milk components, and increased efficiency of milk energy and milk protein synthesis. The inclusion of extruded corn in the diet did not affect ruminal volatile fatty acid. Increasing the feeding frequency reduced the diurnal variation in ruminal pH, ruminal ammonia, and plasma urea, and increased dry matter intake--considerably more in the cows fed ground versus extruded corn--and improved postruminal organic matter, nonstructural carbohydrate, and crude protein digestibility. Total tract digestibility of organic matter and crude protein and milk yield and composition were also increased when cows were fed four versus two meals. Concurrent with the feeding frequency and grain processing effect, an increase in rumen-undegradable protein flow was related to increased digestion of nonstructural carbohydrate postruminally (r = 0.54). We concluded that for cows fed high-starch diets more frequent meals are useful for improving postruminal digestibility and milk yield and composition.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号