首页 | 本学科首页   官方微博 | 高级检索  
     

关于一类不可微规划问题约束品性的一个注记
引用本文:罗和治. 关于一类不可微规划问题约束品性的一个注记[J]. 浙江工业大学学报, 2006, 34(4): 467-469
作者姓名:罗和治
作者单位:浙江工业大学,理学院,浙江,杭州,310032
摘    要:对一类目标函数由可微函数与凸函数之和组成、约束条件由Ⅳ的凸子集X上的可微非线性不等式组成的不可微规划问题,提出了一个Abadie型约束品性,证明了该约束品性弱于文献[1]中的两个约束品性,得到了该约束品性下的Kuhn—Tucker型最优性必要条件.所得结果推广了文献[1]中的相应结果.

关 键 词:不可微规划问题  约束品性  最优性必要条件
文章编号:1006-4303(2006)04-0467-03
收稿时间:2005-12-05
修稿时间:2005-12-05

A note on constraint qualifications for a class of nondifferentiable programming problems
LUO He-zhi. A note on constraint qualifications for a class of nondifferentiable programming problems[J]. Journal of Zhejiang University of Technology, 2006, 34(4): 467-469
Authors:LUO He-zhi
Affiliation:College of Science, Zhejiang University of Technology, Hangzhou 310032, China
Abstract:For a class of the problem of minimizing the sum of a differentiable function and a convex function subject to a set of differentiable nonlinear inequalities on a convex subset X of Rn , an Abadie type constraint qualification is proposed. This constraint qualification has been proved to be weaker than two constraint qualifications given in [1]. The Kuhn-Tucker type necessary optimality conditions under t some of the existing resu his lts constraint qualification are derived. The research result generalizes in [1].
Keywords:non-differentiable programming problem   constraint qualification   necessary optimality condition
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号