首页 | 本学科首页   官方微博 | 高级检索  
     

特征采样和特征融合的子图像人脸识别方法
引用本文:朱玉莲,陈松灿. 特征采样和特征融合的子图像人脸识别方法[J]. 软件学报, 2012, 23(12): 3209-3220
作者姓名:朱玉莲  陈松灿
作者单位:1. 南京航空航天大学计算中心,江苏南京210016;南京航空航天大学计算机科学与技术学院,江苏南京210016
2. 南京航空航天大学计算机科学与技术学院,江苏南京,210016
基金项目:国家自然科学基金,南京航空航天大学基本科研业务费专项科研项目
摘    要:提出一种基于特征采样和特征融合的子图像人脸识别方法(RS-SpCCA).首先,对子图像进行特征采样;然后,将全局特征和采样后的特征使用CCA进行信息融合,以获取包含全局特征和局部特征的相关特征;最后,在相关特征上构建分量分类器.在该方法中,特征采样是为了构建更多且多样的分量分类器;而引入特征融合思想是为了充分利用图像的全局特征.AR,Yale和ORL这3个数据库上的实验结果表明,基于特征采样和特征融合的子图像方法(RS-SpCCA)优于单纯的信息融合方法(SpCCA)和特征采样方法(Semi-RS).

关 键 词:典型相关分析  人脸识别  信息融合  小样本问题  子图像  特征采样
收稿时间:2011-08-02
修稿时间:2012-02-15

Sub-Image Method Based on Feature Sampling and Feature Fusion for Face Recognition
ZHU Yu-Lian and CHEN Song-Can. Sub-Image Method Based on Feature Sampling and Feature Fusion for Face Recognition[J]. Journal of Software, 2012, 23(12): 3209-3220
Authors:ZHU Yu-Lian and CHEN Song-Can
Affiliation:1(Computer Center,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China) 2(College of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
Abstract:In this paper, a sub-image method based on feature sampling and feature fusion (called as RS_SpCCA) is proposed. RS_SpCCA first performs a random subspace method in sub-images which are partitioned in a deterministic way. Then, the method obtains correlation features by fusing sampled features and global feature extracted by certain feature extraction method and finally, constructs component classifiers on corrleation features. In this method, the purpose of sampling feature is to construct more diverse component classifiers, and the purpose of the fusing feature is to make good use of the global information. The experimental results on AR, Yale and ORL three face image databases show that sub-image method based on feature sampling and feature fusion (RS_SpCCA) is superior to both SpCCA and Semi-RS which only use feature sampling or feature fusion.
Keywords:canonical correlation analysis (CCA)   face recognition   information fusion   small sample size   sub-image method   feature sampling
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《软件学报》浏览原始摘要信息
点击此处可从《软件学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号