首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of phosphorus segregation on fracture properties of 2.25Cr-1Mo pressure vessel steel
Authors:M A Islam  M Novovic  P Bowen  J F Knott
Affiliation:(1) Materials and Metallurgical Engineering Department, Bangladesh University of Engineering and Technology, 1000 Dhaka, Bangladesh;(2) School of Metallurgy and Materials, University of Birmingham, U.K.
Abstract:Phosphorus is a very common trace element that can segregate at prior austenite grain boundaries and/or carbide/matrix interfaces of low alloy steels at high temperature (e.g., order of 500 °C) and adversely affect the fracture properties. This paper investigates segregation of P during reversible temper embrittlement (96 h at 520 °C) of quenched and fully tempered 2.25Cr-1Mo steel by Auger electron spectroscopy and describes the segregation mechanism. This paper also describes the effect of P segregation on fracture resistance and fracture mode of unembrittled steels, respectively, by fracture toughness testing over a temperature range of −196 °C to 20 °C and fractography in scanning electron microscopes. During temper embrittlement phosphorus segregation has been attributed due to the mechanism of “carbide rejection”. This segregation caused a reduction in fracture toughness values of the quenched and tempered steels at all test temperatures and an increase in the transition temperature. Phosphorus segregation also changed the brittle fracture micromechanism of quenched and fully tempered samples from one of transgranular cleavage to a mixed mode of fracture (transgranular cleavage and intergranular decohesion). The micromechanism of fracture at temperatures from the upper shelf, however, remained almost unchanged.
Keywords:carbide rejection  cleavage  fracture toughness  intergranular decohesion  transition temperature
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号