首页 | 本学科首页   官方微博 | 高级检索  
     

基于切削声和切削力参数融合的刀具磨损状态监测
引用本文:孙艳杰,艾长胜. 基于切削声和切削力参数融合的刀具磨损状态监测[J]. 组合机床与自动化加工技术, 2011, 0(5)
作者姓名:孙艳杰  艾长胜
作者单位:济南大学机械工程学院,济南,250022
摘    要:针对单一传感器监测刀具磨损状态存在的不足,提出了将声传感方式和力传感方式综合利用,以人工神经网络作为多传感器信息融合的方法.在立式数控加工中心上铣削加工45<'#>钢调质试件,利用驻极体传声器和Kistler测力仪检测与刀具磨损相关的特征量,得出铣削声信号特征量LPCC的第6、7、8阶分量,X、Y向切削力以及绕z轴的力矩与刀具磨损密切相关.以这6个特征量作为神经网络的输入信号,利用有动量的梯度下降的BP算法建立了刀具磨损状态监测的多参数融合模型.研究结果表明神经网络输出值与实际测量值基本相符合,切削声和切削力特征融合后提高了识别刀具磨损程度的准确性和稳定性.

关 键 词:铣削声信号  切削力  参数融合  神经网络  刀具磨损监测

The Tool Wear Condition Monitoring Based on the Parameters Fusion of the Cutting Noise and the Cutting Force
SUN Yan-jie,AI Chang-sheng. The Tool Wear Condition Monitoring Based on the Parameters Fusion of the Cutting Noise and the Cutting Force[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2011, 0(5)
Authors:SUN Yan-jie  AI Chang-sheng
Affiliation:SUN Yan-jie,AI Chang-sheng(School of Mechanical Engineering,University of Jinan,Jinan 250022,China)
Abstract:For the shortcomings of single sensor monitoring tool wear condition,we put forward the method which sound and force sensing sensor are comprehensive utilized and artificial neural network is used as the multi-sensor information fusion.The characteristics associated with tool wear are studied in the vertical machining center using electret microphone and Kistler dynamometer.The experiment results show that the 6th,7th and 8th order components in the characteristic parameters LPCC of the milling sound signal...
Keywords:cutting sound signal  cutting force  parameter fusion  neural network  the tool wear monitoring  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号