首页 | 本学科首页   官方微博 | 高级检索  
     

基于启发搜索空间遗传算法的安全控制最优潮流方法
引用本文:Mithun M Bhasskar,Mohan Benerji,Sydulu M. 基于启发搜索空间遗传算法的安全控制最优潮流方法[J]. 昆明理工大学学报(自然科学版), 2011, 0(3): 46-53
作者姓名:Mithun M Bhasskar  Mohan Benerji  Sydulu M
作者单位:Electrical Engineering Department;National Institute of Technology;Warangal;Larson and Toubro;Mumbai;
摘    要:提出了一种新的可用于安全控制最优潮流问题的遗传算法。该算法应用了一个全新的启发式搜索空间技术,具有更快的收敛速度,缩减了计算的负担。实验采用IEEE 30 bus系统,并以传统的简单遗传算法(SGA),自适应遗传算法(AGA),粒子群技术(PSO),差别演变(DE)作为进行实验比较,结果表明,在具有以及不具有(N-1)断电的偶然性的实例分析中,本文所提算法有更好的鲁棒性,在优化问题上有较好的应用前景。

关 键 词:最优化技术  遗传算法  最优潮流  搜索空间  安全性分析

A Novel Shrinking Search Space(SSS)Genetic Algorithm based approach to Security Constrained Optimal Power Flow
Mithun M Bhasskar,Mohan Benerji,Sydulu M. A Novel Shrinking Search Space(SSS)Genetic Algorithm based approach to Security Constrained Optimal Power Flow[J]. Journal of Kunming University of Science and Technology(Natural Science Edition), 2011, 0(3): 46-53
Authors:Mithun M Bhasskar  Mohan Benerji  Sydulu M
Affiliation:Mithun M Bhasskar1,Mohan Benerji2,Sydulu M1(1.Electrical Engineering Department,National Institute of Technology,Warangal,AP,506004,India,2.Larson and Toubro,Mumbai,400001,India)
Abstract:This paper proposes a new superior genetic algorithm with faster convergence applied to the Security constrained Optimal Power Flow problem.A novel Shrinking Search Space(SSS) technique is applied,which reduces the computational burden and affluence the search space every iteration is put forward.The proposed algorithm is compared with conventional techniques like Simple Genetic Algorithm(SGA),Adaptive Genetic Algorithm(AGA),Particle Swarm Technique(PSO) and Differential Evolution(DE) to prove its robustnes...
Keywords:optimization techniques  genetic algorithm  optimal power flow  Search Space  Security analysis  
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号