首页 | 本学科首页   官方微博 | 高级检索  
     


Simultaneous structure and elastic wave velocity measurement of SiO2 glass at high pressures and high temperatures in a Paris-Edinburgh cell
Authors:Kono Yoshio  Park Changyong  Sakamaki Tatsuya  Kenny-Benson Curtis  Shen Guoyin  Wang Yanbin
Affiliation:High Pressure Collaborative Access Team, Geophysical Laboratory, Carnegie Institution of Washington, 9700 S. Cass Ave., Argonne, Illinois 60439, USA.
Abstract:An integration of multi-angle energy-dispersive x-ray diffraction and ultrasonic elastic wave velocity measurements in a Paris-Edinburgh cell enabled us to simultaneously investigate the structures and elastic wave velocities of amorphous materials at high pressure and high temperature conditions. We report the first simultaneous structure and elastic wave velocity measurement for SiO(2) glass at pressures up to 6.8 GPa at around 500°C. The first sharp diffraction peak (FSDP) in the structure factor S(Q) evidently shifted to higher Q with increasing pressure, reflecting the shrinking of intermediate-range order, while the Si-O bond distance was almost unchanged up to 6.8 GPa. In correlation with the shift of FSDP position, compressional wave velocity (Vp) and Poisson's ratio increased markedly with increasing pressure. In contrast, shear wave velocity (Vs) changed only at pressures below 4 GPa, and then remained unchanged at ~4.0-6.8 GPa. These observations indicate a strong correlation between the intermediate range order variations and Vp or Poisson's ratio, but a complicated behavior for Vs. The result demonstrates a new capability of simultaneous measurement of structures and elastic wave velocities at high pressure and high temperature conditions to provide direct link between microscopic structure and macroscopic elastic properties of amorphous materials.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号