一种基于目标空间转换权重求和的超多目标进化算法 |
| |
引用本文: | 梁正平, 骆婷婷, 王志强, 朱泽轩, 胡凯峰. 一种基于目标空间转换权重求和的超多目标进化算法. 自动化学报, 2022, 48(4): 1060−1078 doi: 10.16383/j.aas.c200483 |
| |
作者姓名: | 梁正平 骆婷婷 王志强 朱泽轩 胡凯峰 |
| |
作者单位: | 1.深圳大学计算机与软件学院 深圳 518060;;2.深圳大学信息中心 深圳 518060 |
| |
基金项目: | 国家重点研发计划(2021YFB2900800);;国家自然科学基金(61871272);;广东省自然科学基金(2021A1515011911,2020A1515010479);;深圳市科技计划(20200811181752003,GGFW2018020518310863)资助~~; |
| |
摘 要: |  权重求和是基于分解的超多目标进化算法中常用的方法, 相比其他方法具有计算简单、搜索效率高等优点, 但难以有效处理帕累托前沿面(Pareto optimal front, PF)为非凸型的问题. 为充分发挥权重求和方法的优势, 同时又能处理好PF为非凸型的问题, 本文提出了一种基于目标空间转换权重求和的超多目标进化算法, 简称NSGAIII-OSTWS. 该算法的核心是将各种问题的PF转换为凸型曲面, 再利用权重求和方法进行优化. 具体地, 首先利用预估PF的形状计算个体到预估PF的距离; 然后, 根据该距离值将个体映射到目标空间中预估凸型曲面与理想点之间的对应位置; 最后, 采用权重求和函数计算出映射后个体的适应值, 据此实现对问题的进化优化. 为验证NSGAIII-OSTWS的有效性, 将NSGAIII-OSTWS与7个NSGAIII的变体, 以及9个具有代表性的先进超多目标进化算法在WFG、DTLZ和LSMOP基准问题上进行对比, 实验结果表明NSGAIII-OSTWS具备明显的竞争性能.

|
关 键 词: | 目标空间转换 权重求和 超多目标优化 进化算法 |
收稿时间: | 2020-06-30 |
|
| 点击此处可从《自动化学报》浏览原始摘要信息 |
|
点击此处可从《自动化学报》下载免费的PDF全文 |
|