Preparation and adsorption property of phenyltriethoxysilane modified SiO2 aerogel |
| |
Authors: | Benlan Lin Sheng Cui Xueyong Liu Yu Liu Xiaodong Shen Guifan Han |
| |
Affiliation: | 1. State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing University of Technology, Nanjing, 210009, China 2. Institute of Chemical Materials, The Chinese Academy of Engineering Physics, Mianyang, 621900, China
|
| |
Abstract: | The hydrophobic silica aerogel (SiO2 aerogel) was prepared by in situ polymerization sol-gel method and ethanol supercritical drying, with tetraethoxysilane (TEOS) as silica source, phenyltriethoxysilane (PTES) as modifier, ethanol as solvent and ammonia as catalyst. The effects of n(PTES)/n(TOES) were investigated on gel time, structure, and hydrophobicity. The SiO2 aerogel was measured by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The effects of n(PTES)/n(TOES) were also studied on adsorption property of pentane, hexane, heptane, octane, benzene, toluene, o-xylene, nitromethane, nitroethane, and nitrobenzene. The adsorption intensity of SiO2 aerogel was compared with that of activated carbon. The results show, with the increasing of n(PTES)/n(TOES), the surface area, pore volume, and pore size of SiO2 aerogel decreased, gel time and hydrophobicity increased, and the contact angle could be 154° with n(PTES)/n(TOES)=0.7. The adsorption intensity of SiO2 aerogel with n(PTES)/n(TOES)=0.5 was bigger than that of activated carbon with an average 5.84 times of 10 organic liquid. The adsorption intensity of aerogel with n(PTES)/n(TOES) =0.1 was the best one in all samples with the average 8.33 times compared with that of activated carbon. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|