首页 | 本学科首页   官方微博 | 高级检索  
     


Unbalance vibratory displacement compensation for active magnetic bearings
Authors:GAO Hui  XU Longxiang  ZHU Yili
Affiliation:College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics,Nanjing 210016, China
Abstract:As the dynamic stiffness of radial magnetic bearings is not big enough, when the rotor spins at high speed, unbalance displacement vibration phenomenon will be produced. The most effective way for reducing the displacement vibration is to enhance the radial magnetic bearing stiffness through increasing the control currents, but the suitable control currents are not easy to be provided, especially, to be provided in real time. To implement real time unbalance displacement vibration compensation, through analyzing active magnetic bearings (AMB) mathematical model, the existence of radial displacement runout is demonstrated. To restrain the runout, a new control scheme-adaptive iterative learning control (AILC) is proposed in view of rotor frequency periodic uncertainties during the startup process. The previous error signal is added into AILC learning law to enhance the convergence speed, and an impacting factor β influenced by the rotor rotating frequency is introduced as learning output coefficient to improve the rotor control effects. As a feed-forward compensation controller, AILC can provide one unknown and perfect compensatory signal to make the rotor rotate around its geometric axis through power amplifier and radial magnetic bearings. To improve AMB closed-loop control system robust stability, one kind of incomplete differential PID feedback controller is adopted. The correctness of the AILC algorithm is validated by the simulation of AMB mathematical model adding AILC compensation algorithm through MATLAB soft. And the compensation for fixed rotational frequency is implemented in the actual AMB system. The simulation and experiment results show that the compensation scheme based on AILC algorithm as feed-forward compensation and PID algorithm as close-loop control can realize AMB system displacement minimum compensation at one fixed frequency, and improve the stability of the control system. The proposed research provides a new adaptive iterative learning control algorithm and control strategy for AMB displacement minimum compensation, and provides some references for time-varied displacement minimum compensation.
Keywords:active magnetic bearings  unbalance displacement compensation  mathematical model  adaptive iterative learning control
本文献已被 CNKI 万方数据 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号