首页 | 本学科首页   官方微博 | 高级检索  
     


Temperature‐stable dielectric and energy storage properties of La(Ti0.5Mg0.5)O3‐doped (Bi0.5Na0.5)TiO3‐(Sr0.7Bi0.2)TiO3 lead‐free ceramics
Authors:Nianshun Zhao  Huiqing Fan  Li Ning  Jiangwei Ma  Yunyan Zhou
Affiliation:1. State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi′an, China;2. School of Electronics and Information, Northwestern Polytechnical University, Xi′an, China;3. School of Mechanical and Electrical Engineering, Huangshan University, Huangshan, China
Abstract:A new type of (0.7?x)Bi0.5Na0.5TiO3‐0.3Sr0.7Bi0.2TiO3xLaTi0.5Mg0.5O3 (LTM1000x,= 0.0, 0.005, 0.01, 0.03, 0.05 wt%) lead‐free energy storage ceramic material was prepared by a combining ternary perovskite compounds, and the phase transition, dielectric, and energy storage characteristics were analyzed. It was found that the ceramic materials can achieve a stable dielectric property with a large dielectric constant in a wide temperature range with proper doping. The dielectric constant was stable at 2170 ± 15% in the temperature range of 35‐363°C at LTM05. In addition, the storage energy density was greatly improved to 1.32 J/cm3 with a high‐energy storage efficiency of 75% at the composition. More importantly, the energy storage density exhibited good temperature stability in the measurement range, which was maintained within 5% in the temperature range of 30‐110°C. Particularly, LTM05 show excellent fatigue resistance within 106 fatigue cycles. The results show that the ceramic material is a promising material for temperature‐stable energy storage.
Keywords:dielectric relaxation  energy storage  lead‐free piezoceramics  phase transition  temperature stable
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号