High-temperature single-crystal 3C-SiC capacitive pressure sensor |
| |
Authors: | Young D.J. Jiangang Du Zorman C.A. Ko W.H. |
| |
Affiliation: | Electr. Eng. & Comput. Sci. Dept., Case Western Reserve Univ., Cleveland, OH, USA; |
| |
Abstract: | Single-crystal 3C-silicon carbide (SiC) capacitive pressure sensors are proposed for high-temperature sensing applications. The prototype device consists of an edge-clamped circular 3C-SiC diaphragm with a radius of 400 /spl mu/m and a thickness of 0.5 /spl mu/m suspended over a 2-/spl mu/m sealed cavity on a silicon substrate. The 3C-SiC film is grown epitaxially on a 100-mm diameter <100> silicon substrate by atmospheric pressure chemical vapor deposition. The fabricated sensor demonstrates a high-temperature sensing capability up to 400/spl deg/C, limited by the test setup. At 400/spl deg/C, the device achieves a linear characteristic response between 1100 and 1760 torr with a sensitivity of 7.7 fF/torr, a linearity of 2.1%, and a hysterisis of 3.7% with a sensing repeatability of 39 torr (52 mbar). A wide range of sensor specifications, such as linear ranges, sensitivities, and capacitance values, can be achieved by choosing the proper device geometrical parameters. |
| |
Keywords: | |
|
|