MPI framework for parallel searching in large biological databases |
| |
Authors: | Dominic David Sigfredo |
| |
Affiliation: | aDePaul University, Chicago, USA |
| |
Abstract: | In this paper, we address the problem of searching huge biological databases on the scale of at least several gigabytes by utilizing parallel processing. Biological databases storing DNA sequences, protein sequences, or mass spectra are growing exponentially. Searches through these databases consume exponentially growing computational resources as well. We demonstrate herein a general use, MPI based, C++ framework for generically splitting databases amongst several computational nodes. The combined RAM of the nodes working in tandem is often sufficient to keep the entire database in memory, and therefore to search it efficiently without paging to disk. The framework runs as a persistent service, processing all submitted queries. This allows for query reordering and better utilization of the memory. Thereby, we achieve superlinear speedups compared to single processor implementations. We demonstrate the utility and speedup of the framework using a real biological database and an actual searching algorithm for mass spectrometry. |
| |
Keywords: | Biological databases Parallel searching Master/worker framework MPI |
本文献已被 ScienceDirect 等数据库收录! |
|