首页 | 本学科首页   官方微博 | 高级检索  
     

珠光体钢丝多道次拉拔成形过程中的应变路径分析
引用本文:杨亚楠,刘劲松,张光亮,叶能永. 珠光体钢丝多道次拉拔成形过程中的应变路径分析[J]. 精密成形工程, 2016, 8(6): 26-31
作者姓名:杨亚楠  刘劲松  张光亮  叶能永
作者单位:1.沈阳理工大学 材料科学与工程学院,沈阳 110159;2.台州学院 机械工程学院,浙江 台州 318000,1.沈阳理工大学 材料科学与工程学院,沈阳 110159;2.中国科学院金属研究所,沈阳 110016,1.台州学院 机械工程学院,浙江 台州 318000;2.中国科学院金属研究所,沈阳 110016,1.沈阳理工大学 材料科学与工程学院,沈阳 110159;2.台州学院 机械工程学院,浙江 台州 318000
基金项目:国家自然科学基金(51404158)
摘    要:目的研究高强度珠光体钢丝冷拉大变形过程中应变路径的变化规律及其对力学性能的影响。方法运用网格重划分和场变量传递技术,建立钢丝多道次冷拉应变路径全纪录有限元模拟方法,预测钢丝由0.62 mm到0.09 mm的多道次冷拉过程应变路径的演变。结果 23道次冷拉变形后,钢丝的最大应变值可达到4.360。随着拉拔道次增加,最大与最小等效应变值之间的差值随之增大,由第1道次的0.028增大至第23道次的0.473。结论钢丝多道次拉拔过程中,各道次在心部到表层方向上的等效应变分布规律相同,均为先增大后减小;钢丝心部等效应变值最小,次表层处等效应变值最大。

关 键 词:钢丝;多道次冷拉拔;有限元模拟;应变路径
收稿时间:2016-10-10
修稿时间:2016-11-10

Strain Path in Multi-pass Drawing of Pearlite Steel Wire
YANG Ya-nan,LIU Jin-song,ZHANG Guang-liang and YE Neng-yong. Strain Path in Multi-pass Drawing of Pearlite Steel Wire[J]. Journal of Netshape Forming Engineering, 2016, 8(6): 26-31
Authors:YANG Ya-nan  LIU Jin-song  ZHANG Guang-liang  YE Neng-yong
Affiliation:1.School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China;2.School of Mechanical Engineering, Taizhou University, Taizhou 318000, China,1.School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China;2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China,1.School of Mechanical Engineering, Taizhou University, Taizhou 318000, China;2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China and 1.School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China;2.School of Mechanical Engineering, Taizhou University, Taizhou 318000, China
Abstract:The work aims to study the variation of strain path during cold-drawn large deformation of high-intensity pearlite steel wire and its effects on the mechanical properties of pearlite steel wire. A finite element simulation method was established in virtue of the technology of grid redivision and field variable transmission, which could completely record the strain-path changes for steel wire in the cold multi-pass drawing process. Therefore, the evolution of strain path when the wire size reduced from 0.62 to 0.09 mm during multi-pass cold drawing was predicted. After 23 passes of cold drawing, the maximum equivalent strain was up to 4.360. With the increase of drawing passes, difference between the maximum and minimum equivalent strains increased from 0.028 to 0.473. During the multi-pass cold drawing of steel wire, the strain path of all passes first increases and then decreases. Distribution rule of equivalent strain from the center to the surface during all passes is same. Equivalent strain in the center is the minimum while that in sub-surface is the maximum.
Keywords:steel wire   multi-pass cold drawing   finite element simulation   strain path
本文献已被 CNKI 等数据库收录!
点击此处可从《精密成形工程》浏览原始摘要信息
点击此处可从《精密成形工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号