首页 | 本学科首页   官方微博 | 高级检索  
     

低电压电泳芯片及其在生化样品分析中的应用
引用本文:徐溢,梁静,胡小国,马亮波,温志渝. 低电压电泳芯片及其在生化样品分析中的应用[J]. 纳米技术与精密工程, 2010, 8(3): 245-250
作者姓名:徐溢  梁静  胡小国  马亮波  温志渝
作者单位:1. 重庆大学化学化工学院,重庆,400030;重庆大学微系统中心,重庆,400030;新型微纳器件与系统技术国家重点学科实验室,重庆,400030;微纳系统及新材料技术国际研发中心,重庆,400030
2. 重庆大学化学化工学院,重庆,400030;重庆大学微系统中心,重庆,400030;新型微纳器件与系统技术国家重点学科实验室,重庆,400030
3. 重庆大学微系统中心,重庆,400030;新型微纳器件与系统技术国家重点学科实验室,重庆,400030;微纳系统及新材料技术国际研发中心,重庆,400030
基金项目:国家自然科学基金资助项目,国家高技术研究发展计划(863)资助项目,全国博士学位论文作者专项基金资助项目,国际科技合作项目,重庆大学研究生科技创新基金资助项目 
摘    要:为了解决微流控电泳芯片集成化问题,设计并制作出一种具有管道两侧微阵列电极结构的硅-PDMS复合低电压电泳芯片.通过电路控制程序在微侧壁阵列电极上施加交替循环的低电压,以实现芯片微管道中低电压电泳过程;并对硅-PDMS芯片的电绝缘性、伏安曲线及电渗流等性能进行了测试和评价.以pH为10.0、10mmol/L的硼砂作为缓冲体系,分离场强150V/cm、切换时间3s的条件下,完成了10-4mol/L的苯丙氨酸和精氨酸的低电压电泳分离,分离度达1.6,实现了两种氨基酸的完全分离.在此基础上,将系统用于牛血清白蛋白和α-乳白蛋白的分离,并初步实现了该两种蛋白质的芯片电泳分离.

关 键 词:微流控芯片  MEMS技术  低电压芯片电泳  电极阵列

Low-Voltage-Driven Electrophoresis Microchip and Its Application in Biochemical Analysis
XU Yi,LIANG Jing,HU Xiao-guo,MA Liang-bo,WEN Zhi-yu. Low-Voltage-Driven Electrophoresis Microchip and Its Application in Biochemical Analysis[J]. Nanotechnology and Precision Engineering, 2010, 8(3): 245-250
Authors:XU Yi  LIANG Jing  HU Xiao-guo  MA Liang-bo  WEN Zhi-yu
Affiliation:1. Chemistry and Chemical Engineering College,Chongqing University,Chongqing 400030,China; 2. Microsystem Research Center,Chongqing University,Chongqing 400030,China; 3. Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology,Chongqing 400030,China; 4. International R&D Center of Micro-Nano Systems and New Materials Technology,Chongqing 400030,China)
Abstract:A new SOI-PDMS hybrid low-voltage-driven electrophoresis microchip with integrated array-electrodes on the microchannel sidewall was designed and constructed. A specially integrated circuit(IC) was proposed to power a DC voltage to particular sets of these electrode pairs in a controlled sequence so that the moving electric field could be formed, and the low-voltage-driven electrophoresis could be realized in the microchannel. Using the mini laser-induced fluorescence (LIF) as detection mode, a set of low-voltage-driven electrophoresis separating and detecting system was finally established. The electrical properties of the microchip, such as insulation, volt-ampere characteristic curve and electroosmotic flow, were tested and evaluated. Fluorescein-5(6)-isothiocyanate (FITC) labeled 10-4 mol/L arginine and phenylalanine were successfully separated under the optimal conditions, including 10 mmol/L borax buffer (pH=10), 150 V/cm separation electric field strength and switching time of 3 s. The separation was completed with a resolution of 1.6. Finally, the system was applied to the protein analysis, and the separation of BSA and α-lactoglobulin from their mixture was realized preliminarily by low-voltage-driven electrophoresis on microchip.
Keywords:microfluidic chip  MEMS technology  low-voltage-driven electrophoresis on microchip  array-electrode pairs
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号