首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络的热轧带钢卷取温度预测
引用本文:王益群,王海芳,孙旭光,高英杰,张伟,朱丹丹. 基于神经网络的热轧带钢卷取温度预测[J]. 中国机械工程, 2005, 16(11): 990-992
作者姓名:王益群  王海芳  孙旭光  高英杰  张伟  朱丹丹
作者单位:燕山大学,秦皇岛,066004
基金项目:河北省自然科学基金资助项目(E2004000221)
摘    要:热轧带钢卷取温度是影响成品带钢性能指标的重要工艺参数之一,其层流控制系统具有高度的非线性。采用附加动量BP算法,建立了基于神经网络前馈与数学模型反馈的联合层流控制系统,仿真结果表明,采用神经网络预测的卷取温度与实测温度相近,结果可信,为层流数学模型参数的在线辨识打下了坚实的基础。

关 键 词:热轧带钢  层流冷却  卷取温度  神经网络  BP算法
文章编号:1004-132X(2005)11-0990-03

Prediction of Coiling Temperature of Hot Rolled Strip Based on Neural Network
Wang Yiqun,WANG Haifang,Sun Xuguang,Gao Yingjie,Zhang Wei,Zhu Dandan. Prediction of Coiling Temperature of Hot Rolled Strip Based on Neural Network[J]. China Mechanical Engineering, 2005, 16(11): 990-992
Authors:Wang Yiqun  WANG Haifang  Sun Xuguang  Gao Yingjie  Zhang Wei  Zhu Dandan
Affiliation:Wang Yiqun Wang Haifang Sun Xuguang Gao Yingjie Zhang Wei Zhu Dandan Yanshan University,Qinhuangdao,066004
Abstract:Hot strip coiling temperature is one of the important parameters of performance index in hot rolled strip, and its control systems of highly nonlinearity. The coiling temperature of hot rolled strip is exactly predicted based on neural network (NN) and an improved BP algorithm.A new coiling temperature system based on NN combined with mathematical model was presented,where the feed-forward control was based on the NN and the feed-backward control was based on mathematic model. Finally, the prediction by the NN shows that the control performance is satisfactory, and it can make mathematical model of coiling temperature identified.
Keywords:hot rolled strip  laminar cooling  coiling temperature  neural network  BP algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号