首页 | 本学科首页   官方微博 | 高级检索  
     

改进R-FCN模型的小尺度行人检测
作者姓名:刘万军  董利兵  曲海成
作者单位:辽宁工程技术大学软件学院, 葫芦岛 125105
基金项目:国家自然科学基金项目(41701479);辽宁省自然科学基金项目(20180550529)
摘    要:目的 为了有效解决传统行人检测算法在分辨率低、行人尺寸较小等情境下检测精度低的问题,将基于区域全卷积网络(region-based fully convolutional networks,R-FCN)的目标检测算法引入到行人检测中,提出一种改进R-FCN模型的小尺度行人检测算法。方法 为了使特征提取更加准确,在ResNet-101的conv5阶段中嵌入可变形卷积层,扩大特征图的感受野;为提高小尺寸行人检测精度,在ResNet-101中增加另一条检测路径,对不同尺寸大小的特征图进行感兴趣区域池化;为解决小尺寸行人检测中的误检问题,利用自举策略的非极大值抑制算法代替传统的非极大值抑制算法。结果 在基准数据集Caltech上进行评估,实验表明,改进的R-FCN算法与具有代表性的单阶段检测器(single shot multiBox detector,SSD)算法和两阶段检测器中的Faster R-CNN(region convolutional neural network)算法相比,检测精度分别提高了3.29%和2.78%;在相同ResNet-101基础网络下,检测精度比原始R-FCN算法提高了12.10%。结论 本文提出的改进R-FCN模型,使小尺寸行人检测精度更加准确。相比原始模型,改进的R-FCN模型对行人检测的精确率和召回率有更好的平衡能力,在保证精确率的同时,具有更大的召回率。

关 键 词:行人检测  区域全卷积网络(R-FCN)  可变形卷积  多路径  非极大值抑制(NMS)  Caltech数据集
收稿时间:2020-06-23
修稿时间:2020-08-26
点击此处可从《中国图象图形学报》浏览原始摘要信息
点击此处可从《中国图象图形学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号