首页 | 本学科首页   官方微博 | 高级检索  
     

基于差分进化算法的RFID定位
引用本文:唐阳坤,崔英花. 基于差分进化算法的RFID定位[J]. 太赫兹科学与电子信息学报, 2021, 19(5): 946-950
作者姓名:唐阳坤  崔英花
作者单位:School of Information and Communication Engineering,Beijing Information Science & Technology University,Beijing 100101,China
基金项目:北京市自然科学基金面上项目资助(4202024);国家自然科学基金资助项目(61340005);促进内涵发展科研水平提高项目重点研究培育项目资助(2020KYNH213)
摘    要:针对传统射频识别(RFID)定位过程繁琐,系统定位精确度低以及计算较为复杂的问题,提出一种利用差分进化(DE)算法优化RFID定位精确度的方法。该方法首先随机初始参考标签的位置坐标,通过接收信号强度(RSS)值计算出阅读器与标签之间的测量距离,再通过优化阅读器与参考标签和待测标签之间的距离误差,估计出离待测标签最近的位置坐标,最后与经典LANDMARC定位系统做比较。仿真结果表明,经典LANDMARC定位系统的平均定位误差为1.115 8 m,而利用差分进化算法优化后的系统平均定位误差为0.001 2 m,从而证明利用差分进化算法优化RFID定位的方法是有效的。

关 键 词:RFID定位;差分进化算法;信号强度值;参考标签;LANDMARC定位系统
收稿时间:2020-06-23
修稿时间:2020-08-22

RFID localization based on differential evolution algorithm
TANG Yangkun,CUI Yinghua. RFID localization based on differential evolution algorithm[J]. Journal of Terahertz Science and Electronic Information Technology, 2021, 19(5): 946-950
Authors:TANG Yangkun  CUI Yinghua
Abstract:Aiming at the problems of conventional Radio Frequency Identification(RFID) positioning process, Differential Evolution(DE) algorithm is proposed to optimize the positioning accuracy of RFID. This method first randomly initializes reference tag location coordinates, calculates the distance between reader and tag by using Received Signal Strength(RSS) value. Then it estimates the location coordinates of the nearest label under test by optimizing the reader and the distance error between the reference labels and tags under test. Finally, it is compared with classical LANDMARC positioning systems. The simulation results show that the average positioning error of the classical LANDMARC positioning system is 1.115 8 m, and that of the system optimized by DE algorithm is 0.001 2 m, which proves that the method of RFID positioning optimized by DE algorithm is effective.
Keywords:
点击此处可从《太赫兹科学与电子信息学报》浏览原始摘要信息
点击此处可从《太赫兹科学与电子信息学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号