首页 | 本学科首页   官方微博 | 高级检索  
     


Fluid–structure Interaction Modeling of Aneurysmal Conditions with High and Normal Blood Pressures
Authors:Ryo Torii  Marie Oshima  Toshio Kobayashi  Kiyoshi Takagi  Tayfun E. Tezduyar
Affiliation:(1) Department of Chemical Engineering, Imperial College, South Kensington Campus, London, SW7 2AZ, UK;(2) Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan;(3) Japan Automobile Research Institute, 2530 Karima, Tsukuba, Ibaraki 305-0822, Japan;(4) Department of Neurosurgery, Ogura Hospital, 4-2-5 Nakamachi, Setagaya, Tokyo 158-8585, Japan;(5) Mechanical Engineering, Rice University—MS 321, 6100 Main Street, Houston, TX 77005, USA
Abstract:Hemodynamic factors like the wall shear stress play an important role in cardiovascular diseases. To investigate the influence of hemodynamic factors in blood vessels, the authors have developed a numerical fluid–structure interaction (FSI) analysis technique. The objective is to use numerical simulation as an effective tool to predict phenomena in a living human body. We applied the technique to a patient-specific arterial model, and with that we showed the effect of wall deformation on the WSS distribution. In this paper, we compute the interaction between the blood flow and the arterial wall for a patient-specific cerebral aneurysm with various hemodynamic conditions, such as hypertension. We particularly focus on the effects of hypertensive blood pressure on the interaction and the WSS, because hypertension is reported to be a risk factor in rupture of aneurysms. We also aim to show the possibility of FSI computations with hemodynamic conditions representing those risk factors in cardiovascular disease. The simulations show that the transient behavior of the interaction under hypertensive blood pressure is significantly different from the interaction under normal blood pressure. The transient behavior of the blood-flow velocity, and the resulting WSS and the mechanical stress in the aneurysmal wall, are significantly affected by hypertension. The results imply that hypertension affects the growth of an aneurysm and the damage in arterial tissues.
Keywords:Cardiovascular modeling  Fluid–  structure interaction  Patient-specific computation  Hypertension
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号