首页 | 本学科首页   官方微博 | 高级检索  
     

基于GAF与GoogLeNet的轴承故障诊断研究
引用本文:黄磊,马圣,曹永华. 基于GAF与GoogLeNet的轴承故障诊断研究[J]. 机床与液压, 2022, 50(1): 193-198. DOI: 10.3969/j.issn.1001-3881.2022.01.036
作者姓名:黄磊  马圣  曹永华
作者单位:江苏航空职业技术学院航空工程学院,江苏镇江212134;成都芯米科技有限公司技术研发部,四川成都610213
基金项目:2020年度江苏航空职业技术学院院级课题资助项目(JATC20010101)
摘    要:为提高滚动轴承故障识别准确率,同时避免繁琐的频谱分析,提出基于GAF与GoogLeNet的轴承故障诊断模型.在实验室中采集滚动轴承正常、内环故障、外环故障和滚动体故障4种工况下的振动信号,利用EMD对振动信号进行分解并提取累积贡献90%的分量;基于重叠采样原理,利用格拉姆算法将选择的EMD分量和原始振动信号处理为二维图...

关 键 词:轴承故障诊断  格拉姆算法  GoogLeNet模型

Research on Bearing Fault Diagnosis Based on GAF and GoogLeNet
HUANG Lei,MA Sheng,CAO Yonghua. Research on Bearing Fault Diagnosis Based on GAF and GoogLeNet[J]. Machine Tool & Hydraulics, 2022, 50(1): 193-198. DOI: 10.3969/j.issn.1001-3881.2022.01.036
Authors:HUANG Lei  MA Sheng  CAO Yonghua
Affiliation:(College of Aeronautical Engineering,Jiangsu Aviation Technical College,Zhenjiang Jiangsu 212134,China;Technology Research and Development Department,Chengdu CoreMii Technology Co.,Ltd.,Chengdu Sichuan 610213,China)
Abstract:In order to improve the accuracy of rolling bearing fault diagnosis and avoid tedious spectrum analysis, a bearing fault diagnosis model based on GAF and GoogLeNet was proposed. The vibration signals of normal rolling bearing,inner ring failure,outer ring fault and rolling fault were collected in the laboratory,and the EMD was used to decompose the vibration signal and extract the components contributed 90% of the total; based on the overlapping sampling principle, the selected EMD component and the original vibration signal were processed into a two-dimensional picture by using the Gram algorithm, and these pictures were divided into training set, verification set and test set; the GoogLeNet model was used to learn from the training set, and the trained GoogLeNet model was used to test bearing failure samples. The results show that the bearing fault samples can be better identified by using the GoogLeNet model under the data set constructed by GAF.
Keywords:Bearing fault diagnosis   Gram algorithm   GoogLeNet model
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《机床与液压》浏览原始摘要信息
点击此处可从《机床与液压》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号