首页 | 本学科首页   官方微博 | 高级检索  
     


Optimized mass flow rate distribution analysis for cooling the ITER Blanket System
Affiliation:1. Graduate School of Science, Shizuoka University, Shizuoka, Japan;2. National Institute for Fusion Science, Gifu, Japan;3. Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka, Japan;4. Graduate School of Engineering, Hokkaido University, Sapporo, Japan;5. Department of Material Science, Shimane University, Matsue, Shimane, Japan;6. Hydrogen Isotope Research Center, University of Toyama, Toyama, Japan;1. Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology (INR), Germany;2. Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-WPT), Germany;3. Indian Institute of Technology Madras (IITM), Department of Mechanical Engineering, India;1. Korea Atomic Energy Research Institute, 989 Daeduck-daero, Yuseong-gu, Daejeon 305-353, Republic of Korea;2. National Fusion Research Institute, Gwahangno, Yuseong-gu, Daejeon 305-333, Republic of Korea;1. Korea Atomic Energy Research Institute, Republic of Korea;2. National Fusion Research Institute, Republic of Korea;1. Faculty of Engineering and Resource Science, Akita University, 1-1, Tegatagakuen-cho, Akita 010-8502, Japan;2. Fusion Research and Development Directorate, Japan Atomic Energy Agency, 2-166, Omotedate, Obuchi, Rokkasho, Kamikita, Aomori 039-3212, Japan
Abstract:This paper presents the rationale to the optimization of water distribution in ITER blanket modules, meeting both Blanket System requirements and interface compliance requirements.The key challenging constraints include to: be compatible with the overall water allocation (3140 kg/s for 440 wall mounted BMs); meet the critical heat flux margin of 1.4 in the plasma facing units; meet a maximum temperature increase of 70 °C at the outlet of each single BM; and ensure that water velocity is less than 7 m/s in all manifolds, and that the pressure drops of all BMs can be equilibrated. The methodology and the successful result are presented.
Keywords:ITER  Blanket System  Mass flow rate  Critical heat flux
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号